On sums of binomial coefficients modulo p2

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

Binomial Character Sums modulo Prime Powers

We show that the binomial and related multiplicative character sums p ∑ x=1 (x,p)=1 χ(x(Ax +B)), p ∑ x=1 χ1(x)χ2(Ax k +B), have a simple evaluation for large enough m (for m ≥ 2 if p ABk).

متن کامل

PRODUCTS OF BINOMIAL COEFFICIENTS MODULO p 2

As usual Z, Q, R and C denote the ring of integers, the rational field, the real field and the complex field respectively. We also let Z = {1, 2, 3, · · · } and C∗ = C \ {0}. For a ∈ Z and n ∈ Z, by (a, n) we mean th greatest common divisor of a and n, if n is odd then the Jacobi symbol ( a n ) is defined in terms of Legendre symbols (see, e.g. [IR]). For x ∈ R, [x] and {x} stand for the integr...

متن کامل

Sums of Reciprocals of Triple Binomial Coefficients

Recommended by George Andrews We investigate the integral representation of infinite sums involving the reciprocals of triple bino-mial coefficients. We also recover some wellknown properties of ζ3 and extend the range of results given by other authors.

متن کامل

Sums Involving the Inverses of Binomial Coefficients

In this paper, we compute certain sums involving the inverses of binomial coefficients. We derive the recurrence formulas for certain infinite sums related to the inverses of binomial coefficients.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2012

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm127-1-3